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Summary: Under carefully chosen working conditions (solvent, temperature),
methyltitanium reagents smoothly convert homoallyl aleohols having a terminal
double-bond into (E)-3-penten-I-ols whereas non-terminal 3-alken-I-ols afford
4-methyl-branched derivatives with configurational inversion of the chain

(Z > E; E > 7Z), stereoselectivities being better than 99%.

Recently we have disclosed a procedure for the titanium-mediated methylation of homoallyl alco-
hols 1] the conditions of which we ourselves qualified as "devoid of any elegance” [2]. After
mixing of the reagent with the substrate and evaporation of the solvent, heating of the viscous
residue to a minimum temperature of 120°C for at least 3 h was found necessary to accomplish the
desired §-hydrogen/methyl substitution in a presumed addition/elimination sequence. Yields were
moderate and, worse, in several cases imperfect typo-, regio- or stereo-selectivities were
observed.
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Any attempt to improve the method must explicitly deal with the crucial role that the solvent
plays in organotitanium reactions. In hydrocarbon or chlorohydrocarbon media 3-buten-1-o]
appears to react, though at low temperature, more or less randomly, the 3-penten-1-ols (mainly
trans) beég§ formed with a maximum yield of 32% and being accompanied by up to 35% hydrogenation

products . In ethereal solvents titanium reagents such as ] (in general, X = C1) (4] should
exist as monomeric species and hence favor more selective transformations. On the other hand,
the intramolecular addition of an alkenyloxy-attached methyltitanium moiety to the olefinic
double bond requires coordinative unsaturation at the metal. In other words, adduct 23 must

first loose (at least) one solvent molecule and become 2 before the rate-limiting step can
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take place to produce 3 . The subsequent hydride transfer (+ 4g ), elimination of hydrochloric
acid (or any other H-X) (51 and oligomerization (or polymerization) of the resulting Ti(II)
species (- 4b ) are fast processes that require no further activation.
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Due to its extreme "oxyphilicity" [6], titanium binds ethers very tightly. Tetrahydrofuran can
only be removed at high temperatures (> 120°C) unless reduced pressure is applied. The chelating
ethyleneglycol dimethyl ether is even more strongly retained; in its presence titanium reagents
are almost inert. In contrast, diethyl ether (DEE) complexes with metals much more loosely and
may be easily replaced. Thus, we found the titanium-mediated methylation of homoallyl alcohols
to occur in this solvent even at 25°C. Substrates having a terminal, vinylic double-bond such

as 3-buten-1-01 ( 5 ) afford homologated (£)-3-alken-1-0ls with satisfactory yields (v 75%) and
stereoselectivity (v 98%). As the proposed mechanism would have predicted, 3-methyl-3-buten-1-o0l
( 6 ) or any other 3-alkyl-substituted substrate gives rise to two regioisomeric products while
with norborneol ( 7 ) the reaction stops at the adduct stage, no intramolecular hydride transfer
being possible within the rigid bicyclic structure.
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In diethyl ether, however, only poor stereoselectivities (z/E ~ 10 : 90) can be achieved if homo-
allyl alcohols having internal double bonds are employed as the substrates. Much better results
(z/E < 1 : 99) are achieved in pentane solutions which contain small amounts of dimethyl ether [71
Starting with, respectively, trans- and cis-3-hexen-1-01 (trans- or eis- § ), both (z)- and (E)-
4-methyl-3-hexen-1-01 were isolated after 3 h at 20°C in 55% and 60% yield. In the same way, cis—

8-methyl1-3,7 nonadien-1-o1 ( 9 ) gave (E)-4,8-dimethyl-3,7-nonadienol ("homogeraniol®, 80%).
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The last example demonstrates a remarkable synthetic potential of organotitanium reagents for a
"non-natural” assembling of isoprene units. A C(Sn)' or C(sn)+1-precursor can bﬁsghain-elongated
to a key alkynol of type 10 by using C-nucleophiles such as dilithio-propyne , 4-1ithiooxy-
1-butynyl-1ithium (9] or 2-{3-chloro-4,5-dihydrofuranyl}-copper [10]. Then, alkynol 10 may be
directly treated with organotitanium compounds, following the procedure of Thompson [11], to give
the (z)-homoterpenoid (2)- 12 . Alternatively, it may be submitted to partial hydrogenation and
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the resulting eis-3-alken-1-01 ]] (also accessible by consecutive addition of acetylene

and oxirane to the respective C -copper reagent) finally converted into the stereoisomeric

homoterpenoid (£)- 12 .
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